博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Storm-源码分析-Topology Submit-Executor-mk-threads
阅读量:5834 次
发布时间:2019-06-18

本文共 29448 字,大约阅读时间需要 98 分钟。

 

对于executor thread是整个storm最为核心的代码, 因为在这个thread里面真正完成了大部分工作, 而其他的如supervisor,worker都是封装调用.

对于executor的mk-threads, 是通过mutilmethods对spout和bolt分别定义不同的逻辑

1. Spout Thread

(defmethod mk-threads :spout [executor-data task-datas]  (let [{:keys [storm-conf component-id worker-context transfer-fn report-error sampler open-or-prepare-was-called?]} executor-data        ;;1.1 定义pending
^ISpoutWaitStrategy spout-wait-strategy (init-spout-wait-strategy storm-conf)        max-spout-pending (executor-max-spout-pending storm-conf (count task-datas))        ^Integer max-spout-pending (if max-spout-pending (int max-spout-pending))                last-active (atom false)                spouts (ArrayList. (map :object (vals task-datas)))        rand (Random. (Utils/secureRandomLong))                pending (RotatingMap.                 2 ;; microoptimize for performance of .size method                 (reify RotatingMap$ExpiredCallback                   (expire [this msg-id [task-id spout-id tuple-info start-time-ms]]                     (let [time-delta (if start-time-ms (time-delta-ms start-time-ms))] ;;start-time-ms是取样赋值的,一般为null,只有有start-time-ms,才会产生time-delta                       (fail-spout-msg executor-data (get task-datas task-id) spout-id tuple-info time-delta)                       ))))
 
;;1.2 定义tuple-action-fn         tuple-action-fn (fn [task-id ^TupleImpl tuple]                          (let [stream-id (.getSourceStreamId tuple)]                            (condp = stream-id                              Constants/SYSTEM_TICK_STREAM_ID (.rotate pending)                              Constants/METRICS_TICK_STREAM_ID (metrics-tick executor-data task-datas tuple)                              (let [id (.getValue tuple 0)      ;;tuple values, values[0]为id                                    [stored-task-id spout-id tuple-finished-info start-time-ms] (.remove pending id)];;从pending中删除tuple,重要!                                (when spout-id                                  (when-not (= stored-task-id task-id)                                    (throw-runtime "Fatal error, mismatched task ids: " task-id "" stored-task-id))                                  (let [time-delta (if start-time-ms (time-delta-ms start-time-ms))]                                    (condp = stream-id                                      ACKER-ACK-STREAM-ID (ack-spout-msg executor-data (get task-datas task-id)   ;;ack                                                                         spout-id tuple-finished-info time-delta)                                      ACKER-FAIL-STREAM-ID (fail-spout-msg executor-data (get task-datas task-id)  ;;fail                                                                           spout-id tuple-finished-info time-delta)                                      )))                                ;; TODO: on failure, emit tuple to failure stream                                ))))        receive-queue (:receive-queue executor-data)    ;;取得receive disruptor queue        event-handler (mk-task-receiver executor-data tuple-action-fn) ;;定义disruptor/clojure-handler, 使用tuple-action-fn处理从receive-queue里面得到的tuple        has-ackers? (has-ackers? storm-conf)        emitted-count (MutableLong. 0)        empty-emit-streak (MutableLong. 0)                ;; the overflow buffer is used to ensure that spouts never block when emitting        ;; this ensures that the spout can always clear the incoming buffer (acks and fails), which        ;; prevents deadlock from occuring across the topology (e.g. Spout -> Bolt -> Acker -> Spout, and all        ;; buffers filled up)        ;; when the overflow buffer is full, spouts stop calling nextTuple until it's able to clear the overflow buffer        ;; this limits the size of the overflow buffer to however many tuples a spout emits in one call of nextTuple,         ;; preventing memory issues        overflow-buffer (LinkedList.)]
;; 1.3 async-loop thread    [(async-loop      (fn []        ;; If topology was started in inactive state, don't call (.open spout) until it's activated first.        (while (not @(:storm-active-atom executor-data))          (Thread/sleep 100))                (log-message "Opening spout " component-id ":" (keys task-datas))        (doseq [[task-id task-data] task-datas                :let [^ISpout spout-obj (:object task-data)                      tasks-fn (:tasks-fn task-data)
;; 1.3.1 send-spout-msg                       send-spout-msg (fn [out-stream-id values message-id out-task-id]                                       (.increment emitted-count)                                       (let [out-tasks (if out-task-id                                                         (tasks-fn out-task-id out-stream-id values)  ;;direct grouping                                                         (tasks-fn out-stream-id values))   ;;调用grouper产生target tasks                                             rooted? (and message-id has-ackers?)  ;;指定messageid并且有acker, 说明需要track该message, root?意思需要track的DAG的root                                             root-id (if rooted? (MessageId/generateId rand)) ;;rand.nextLong, 随机long, 产生root-id                                             out-ids (fast-list-for [t out-tasks] (if rooted? (MessageId/generateId rand)))] ;;对于发送到的每个task, 产生一个out-id(out-edgeid)                                         (fast-list-iter [out-task out-tasks id out-ids]                                                         (let [tuple-id (if rooted?                                                                          (MessageId/makeRootId root-id id);;返回包含hashmap{root-id, out-id}的MessageId对象
(MessageId/makeUnanchored))  ;;返回包含hashmap{}的MessageId对象
out-tuple (TupleImpl. worker-context   ;;生成tuple对象
values                                                                                     task-id                                                                                     out-stream-id                                                                                     tuple-id)]                                                           (transfer-fn out-task      ;;调用executor->transfer-fn将tuple发送到spout的发送queue                                                                        out-tuple                                                                        overflow-buffer)))                                         (if rooted?                                           (do   ;;如果需要跟踪
(.put pending root-id [task-id  ;;往pending queue增加需要track的tuple信息
message-id                                                                    {:stream out-stream-id :values values}                                                                    (if (sampler) (System/currentTimeMillis))]) ;;只有sampler为true, 才会设置starttime,后面才会更新metrics和stats                                             (task/send-unanchored task-data  ;;往ACKER-INIT-STREAM发送message, 告诉acker track该message                                                                    ACKER-INIT-STREAM-ID                                                                   [root-id (bit-xor-vals out-ids) task-id]                                                                   overflow-buffer))                                           (when message-id  ;;rooted?为false, 而有message-id, 意味着没有acker(has-ackers?为false)                                             (ack-spout-msg executor-data task-data message-id  ;;既然没有acker, 就直接ack                                                            {:stream out-stream-id :values values}                                                            (if (sampler) 0))))                                         (or out-tasks []) ;;send-spout-msg返回值, 发送的task lists或空[]                                         ))]]          (builtin-metrics/register-all (:builtin-metrics task-data) storm-conf (:user-context task-data)) ;;注册builtin-metrics
;; 1.3.2 spout.open          (.open spout-obj                 storm-conf                 (:user-context task-data)                 (SpoutOutputCollector.                  (reify ISpoutOutputCollector ;;实现ISpoutOutputCollector                    (^List emit [this ^String stream-id ^List tuple ^Object message-id] ;;实现emit                      (send-spout-msg stream-id tuple message-id nil)                      )                    (^void emitDirect [this ^int out-task-id ^String stream-id                                       ^List tuple ^Object message-id]                      (send-spout-msg stream-id tuple message-id out-task-id)                      )                    (reportError [this error]                      (report-error error)                      )))))        (reset! open-or-prepare-was-called? true)         (log-message "Opened spout " component-id ":" (keys task-datas))
;; 1.3.3 setup-metrics!         (setup-metrics! executor-data) ;;使用schedule-recurring定期给自己发送METRICS_TICK tuple                (disruptor/consumer-started! (:receive-queue executor-data)) ;;设置queue上面的consumerStartedFlag表示consumer已经启动        ;;1.3.4 fn
(fn []          ;; This design requires that spouts be non-blocking          (disruptor/consume-batch receive-queue event-handler) ;;从recieve-queue取出batch tuples, 并使用tuple-action-fn处理                    ;; try to clear the overflow-buffer, 将overflow-buffer里面的数据放到发送的缓存queue里面          (try-cause            (while (not (.isEmpty overflow-buffer))              (let [[out-task out-tuple] (.peek overflow-buffer)]                (transfer-fn out-task out-tuple false nil)                (.removeFirst overflow-buffer)))          (catch InsufficientCapacityException e            ))                    (let [active? @(:storm-active-atom executor-data)                curr-count (.get emitted-count)]            (if (and (.isEmpty overflow-buffer)  ;;只有当overflow-buffer为空, 并且pending没有达到上限的时候, spout可以继续emit tuple                     (or (not max-spout-pending)                         (< (.size pending) max-spout-pending)))              (if active?  ;;storm集群是否active                (do  ;;storm active                  (when-not @last-active  ;;如果当前spout出于unactive状态                    (reset! last-active true)                    (log-message "Activating spout " component-id ":" (keys task-datas))                    (fast-list-iter [^ISpout spout spouts] (.activate spout))) ;;先active spout                                 (fast-list-iter [^ISpout spout spouts] (.nextTuple spout))) ;;调用nextTuple,产生新的tuple                (do ;;storm unactive                  (when @last-active ;;如果spout出于active状态                    (reset! last-active false)                    (log-message "Deactivating spout " component-id ":" (keys task-datas))                    (fast-list-iter [^ISpout spout spouts] (.deactivate spout))) ;;deactive spout并休眠                  ;; TODO: log that it's getting throttled                  (Time/sleep 100))))            (if (and (= curr-count (.get emitted-count)) active?) ;;没有能够emit新的tuple(前后emitted-count没有变化)              (do (.increment empty-emit-streak)                  (.emptyEmit spout-wait-strategy (.get empty-emit-streak))) ;;调用spout-wait-strategy进行sleep              (.set empty-emit-streak 0)              ))                     0)) ;;返回0, 表示async-loop的sleep时间为0      :kill-fn (:report-error-and-die executor-data)      :factory? true      :thread-name component-id)]))

1.1 定义pending

spout在emit tuple后, 会等待ack或fail, 所以这些tuple暂时不能直接从删掉, 只能先放入pending队列, 直到最终被ack或fail后, 才能被删除

首先, tuple pending的个数是有限制的, p*num-tasks

p是TOPOLOGY-MAX-SPOUT-PENDING, num-tasks是spout的task数

max-spout-pending (executor-max-spout-pending storm-conf (count task-datas))(defn executor-max-spout-pending [storm-conf num-tasks]  (let [p (storm-conf TOPOLOGY-MAX-SPOUT-PENDING)]    (if p (* p num-tasks))))

然后, spouts需要两种情况下需要wait, nextTuple为空, 或达到maxSpoutPending上限

/** * The strategy a spout needs to use when its waiting. Waiting is * triggered in one of two conditions: *  * 1. nextTuple emits no tuples * 2. The spout has hit maxSpoutPending and can't emit any more tuples *  * The default strategy sleeps for one millisecond. */public interface ISpoutWaitStrategy {    void prepare(Map conf);    void emptyEmit(long streak);}

默认的wait策略是, sleep1毫秒, 可以在TOPOLOGY-SPOUT-WAIT-STRATEGY上配置特有的wait strategy class

^ISpoutWaitStrategy spout-wait-strategy (init-spout-wait-strategy storm-conf)

最后, 定义pending的结构, 并且pending是会设置超时的, 不然万一后面的blot发生问题, 会导致spout block

pending (RotatingMap.         2 ;; microoptimize for performance of .size method, buckets数为2         (reify RotatingMap$ExpiredCallback           (expire [this msg-id [task-id spout-id tuple-info start-time-ms]]             (let [time-delta (if start-time-ms (time-delta-ms start-time-ms))]               (fail-spout-msg executor-data (get task-datas task-id) spout-id tuple-info time-delta)               ))))

RotatingMap (backtype.storm.utils), 是无cleaner线程版的TimeCacheMap()

其他的基本一致, 主要数据结构为, LinkedList<HashMap<K, V>> _buckets;

最主要的操作是rotate, 删除旧bucket, 添加新bucket

public Map
rotate() { Map
dead = _buckets.removeLast(); _buckets.addFirst(new HashMap
()); if(_callback!=null) { for(Entry
entry: dead.entrySet()) { _callback.expire(entry.getKey(), entry.getValue()); } } return dead; }

但RotatingMap需要外部的计数器来触发rotate, storm是通过SYSTEM_TICK来触发, 下面会看到

1.2 定义tuple-action-fn

tuple-action-fn, 处理不同stream的tuple

1.2.1 SYSTEM_TICK_STREAM_ID

(.rotate pending) rotate pending列表

1.2.2 METRICS_TICK_STREAM_ID

执行(metrics-tick executor-data task-datas tuple)

触发component发送builtin-metrics的data, 到METRICS_STREAM, 最终发送到metric-bolt统计当前的component处理tuples的情况

具体逻辑, 就是创建task-info和data-points, 并send到METRICS_STREAM

(defn metrics-tick [executor-data task-datas ^TupleImpl tuple]  (let [{:keys [interval->task->metric-registry ^WorkerTopologyContext worker-context]} executor-data        interval (.getInteger tuple 0)] ;;metrics tick tuple的values[0]表示interval    (doseq [[task-id task-data] task-datas            :let [name->imetric (-> interval->task->metric-registry (get interval) (get task-id)) ;;topology context的_registeredMetrics实际指向interval->task->metric-registry                   task-info (IMetricsConsumer$TaskInfo.                             (. (java.net.InetAddress/getLocalHost) getCanonicalHostName)                             (.getThisWorkerPort worker-context)                             (:component-id executor-data)                             task-id                             (long (/ (System/currentTimeMillis) 1000))                             interval)                  data-points (->> name->imetric                                   (map (fn [[name imetric]]                                          (let [value (.getValueAndReset ^IMetric imetric)]                                            (if value                                              (IMetricsConsumer$DataPoint. name value)))))                                   (filter identity)                                   (into []))]]      (if (seq data-points)        (task/send-unanchored task-data Constants/METRICS_STREAM_ID [task-info data-points]))))) ;;将[task-info data-points]发送到METRICS_STREAM

1.2.3 default, 普通tuple

对于spout而言, 作为topology的source, 收到的tuple只会是ACKER-ACK-STREAM或ACKER-FAIL-STREAM

所以收到tuple, 取得msgid, 从pending列表中删除
最终根据steamid, 调用ack-spout-msg或fail-spout-msg

(defn- ack-spout-msg [executor-data task-data msg-id tuple-info time-delta]  (let [storm-conf (:storm-conf executor-data)        ^ISpout spout (:object task-data)        task-id (:task-id task-data)]    (when (= true (storm-conf TOPOLOGY-DEBUG))      (log-message "Acking message " msg-id))    (.ack spout msg-id) ;;ack    (task/apply-hooks (:user-context task-data) .spoutAck (SpoutAckInfo. msg-id task-id time-delta)) ;;执行ack hook    (when time-delta      ;;满足sample条件, 更新builtin-metrics和stats      (builtin-metrics/spout-acked-tuple! (:builtin-metrics task-data) (:stats executor-data) (:stream tuple-info) time-delta)      (stats/spout-acked-tuple! (:stats executor-data) (:stream tuple-info) time-delta))))

以ack-spout-msg为例, fail基本一样, 只是调用.fail而已

1.3 async-loop thread

这是executor的主线程, 没有使用disruptor.consume-loop来实现, 是因为这里不仅仅包含对recieve tuple的处理

所以使用async-loop来直接实现
前面也了解过, async-loop的实现是新开线程执行afn, 返回为sleeptime, 然后sleep sleeptime后继续执行afn……
这里的实现比较奇特,
在afn中只是做了准备工作, 比如定义send-spout-msg, 初始化spout…
然后afn, 返回一个fn, 真正重要的工作在这个fn里面执行了, 因为sleeptime在作为函数参数的时候, 也一定会先被evaluate
比较奇葩, 为什么要这样...

1.3.1 send-spout-msg

首先生成send-spout-msg函数, 这个函数最终被emit, emitDirect调用, 用于发送spout msg

所以逻辑就是首先根据message-id判断是否需要track, 需要则利用MessageId生成root-id和out-id
然后生成tuple对象(TupleImpl)
先看看MessageId和TupleImpl的定义

这里的MessageId和emit传入的message-id没有什么关系, 这个名字起的容易混淆

这里主要的操作就是通过generateId产生随机id, 然后通过makeRootId, 将[root-id, out-id]加入Map, anchorsToIds

package backtype.storm.tuple;
public class MessageId {    private Map
_anchorsToIds; public static long generateId(Random rand) { return rand.nextLong(); } public static MessageId makeUnanchored() { return makeId(new HashMap
()); } public static MessageId makeId(Map
anchorsToIds) { return new MessageId(anchorsToIds); } public static MessageId makeRootId(long id, long val) { Map
anchorsToIds = new HashMap
(); anchorsToIds.put(id, val); return new MessageId(anchorsToIds); }
public class TupleImpl extends IndifferentAccessMap implements Seqable, Indexed, IMeta, Tuple {    private List values;    private int taskId;    private String streamId;    private GeneralTopologyContext context;    private MessageId id;    private IPersistentMap _meta = null;    Long _processSampleStartTime = null;    Long _executeSampleStartTime = null;}

后面做的事, 使用transfer-fn将tuple发到发送queue, 然后在pending中增加item用于tracking, 并send message到acker通知它track这个message

1.3.2 spout.open, 初始化spout

很简单, 关键是实现ISpoutOutputCollector, emit, emitDirect

1.3.3 setup-metrics!, METRICS_TICK的来源

使用schedule-recurring定期给自己发送METRICS_TICK tuple, 以触发builtin-metrics的定期发送

1.3.4 fn

里面做了spout thread最关键的几件事, 最终返回0, 表示async-loop的sleep时间

handle recieve-queue里面的tuple
调用nextTuple…
注意所有事情都是在一个线程里面顺序做的, 所以不能有block的逻辑

 

2. Bolt Thread

(defmethod mk-threads :bolt [executor-data task-datas]  (let [execute-sampler (mk-stats-sampler (:storm-conf executor-data))        executor-stats (:stats executor-data)        {:keys [storm-conf component-id worker-context transfer-fn report-error sampler                open-or-prepare-was-called?]} executor-data        rand (Random. (Utils/secureRandomLong))
 
;;2.1 tuple-action-fn        tuple-action-fn (fn [task-id ^TupleImpl tuple]                          (let [stream-id (.getSourceStreamId tuple)]                            (condp = stream-id                              Constants/METRICS_TICK_STREAM_ID (metrics-tick executor-data task-datas tuple)                              (let [task-data (get task-datas task-id)
^IBolt bolt-obj (:object task-data)  ;;取出bolt对象
user-context (:user-context task-data)                                    sampler? (sampler)                                      execute-sampler? (execute-sampler)                                    now (if (or sampler? execute-sampler?) (System/currentTimeMillis))] ;;满足sample条件,记录当前时间
(when sampler?                                  (.setProcessSampleStartTime tuple now))                                (when execute-sampler?                                  (.setExecuteSampleStartTime tuple now))                                (.execute bolt-obj tuple) ;;调用Bolt的execute方法                                     (let [delta (tuple-execute-time-delta! tuple)] ;;只有上面生成了now, 这里delta才不为空                                       (task/apply-hooks user-context .boltExecute (BoltExecuteInfo. tuple task-id delta)) ;;执行boltExecute hook                                  (when delta  ;;满足sample条件, 则更新builtin-metrics和stats                                    (builtin-metrics/bolt-execute-tuple! (:builtin-metrics task-data)                                                                         executor-stats                                                                         (.getSourceComponent tuple)                                                                                                                               (.getSourceStreamId tuple)                                                                         delta)                                    (stats/bolt-execute-tuple! executor-stats                                                               (.getSourceComponent tuple)                                                               (.getSourceStreamId tuple)                                                               delta)))))))]        ;; TODO: can get any SubscribedState objects out of the context now
;;2.2 async-loop    [(async-loop      (fn []        ;; If topology was started in inactive state, don't call prepare bolt until it's activated first.        (while (not @(:storm-active-atom executor-data))                    (Thread/sleep 100))                (log-message "Preparing bolt " component-id ":" (keys task-datas))        (doseq [[task-id task-data] task-datas                :let [^IBolt bolt-obj (:object task-data)                      tasks-fn (:tasks-fn task-data)                      user-context (:user-context task-data)
;;2.2.1 bolt-emit                      bolt-emit (fn [stream anchors values task]                                  (let [out-tasks (if task                                                    (tasks-fn task stream values) ;;direct grouping                                                    (tasks-fn stream values))]                                    (fast-list-iter [t out-tasks] ;;每个target out-task                                                    (let [anchors-to-ids (HashMap.)] ;;初始化,用于保存tuple上产生的edges和roots之间的关系                                                      (fast-list-iter [^TupleImpl a anchors] ;;每个anchor(源tuple)                                                                      (let [root-ids (-> a .getMessageId .getAnchorsToIds .keySet)] ;;得到所有的root-ids,anchor可能来自多个源
(when (pos? (count root-ids))                                                                          (let [edge-id (MessageId/generateId rand)] ;;为每个anchor产生新的edge-id                                                                            (.updateAckVal a edge-id) ;;和anchor tuple的_outAckVal做异或, 缓存新产生的edgeid                                                                            (fast-list-iter [root-id root-ids]                                                                                            (put-xor! anchors-to-ids root-id edge-id)) ;;生成新的anchors-to-ids, 保存新edge和所有root-id的关系到anchors-to-ids                                                                             ))))                                                      (transfer-fn t                                                                   (TupleImpl. worker-context                                                                               values                                                                               task-id                                                                               stream                                                                               (MessageId/makeId anchors-to-ids)))))                                    (or out-tasks [])))]] ;;返回值, target task ids          (builtin-metrics/register-all (:builtin-metrics task-data) storm-conf user-context)
 
2.2.2 prepare          (.prepare bolt-obj                    storm-conf                    user-context                    (OutputCollector.                     (reify IOutputCollector                       (emit [this stream anchors values]                         (bolt-emit stream anchors values nil))                       (emitDirect [this task stream anchors values]                         (bolt-emit stream anchors values task))                       (^void ack [this ^Tuple tuple]                         (let [^TupleImpl tuple tuple                               ack-val (.getAckVal tuple)] ;;取出缓存的新edges                              (fast-map-iter [[root id] (.. tuple getMessageId getAnchorsToIds)] ;;对于anchors-to-ids中记录的每个root进行ack                                          (task/send-unanchored task-data                                                                ACKER-ACK-STREAM-ID                                                                [root (bit-xor id ack-val)])  ;;发送ack消息, ack和同步新edges                                          ))                         (let [delta (tuple-time-delta! tuple)]  ;;更新metrics和stats                           (task/apply-hooks user-context .boltAck (BoltAckInfo. tuple task-id delta))                           (when delta                             (builtin-metrics/bolt-acked-tuple! (:builtin-metrics task-data)                                                                executor-stats                                                                (.getSourceComponent tuple)                                                                                                                      (.getSourceStreamId tuple)                                                                delta)                             (stats/bolt-acked-tuple! executor-stats                                                      (.getSourceComponent tuple)                                                      (.getSourceStreamId tuple)                                                      delta))))                       (^void fail [this ^Tuple tuple]                         (fast-list-iter [root (.. tuple getMessageId getAnchors)]                                         (task/send-unanchored task-data                                                               ACKER-FAIL-STREAM-ID                                                               [root])) ;;对应fail比较简单,任意一个edge失败,都表示root失败                         (let [delta (tuple-time-delta! tuple)]                           (task/apply-hooks user-context .boltFail (BoltFailInfo. tuple task-id delta))                           (when delta                             (builtin-metrics/bolt-failed-tuple! (:builtin-metrics task-data)                                                                 executor-stats                                                                 (.getSourceComponent tuple)                                                                                                                       (.getSourceStreamId tuple))                             (stats/bolt-failed-tuple! executor-stats                                                       (.getSourceComponent tuple)                                                       (.getSourceStreamId tuple)                                                       delta))))                       (reportError [this error]                         (report-error error)                         )))))        (reset! open-or-prepare-was-called? true)                (log-message "Prepared bolt " component-id ":" (keys task-datas))        (setup-metrics! executor-data)  ;;创建metrics tick        (let [receive-queue (:receive-queue executor-data)              event-handler (mk-task-receiver executor-data tuple-action-fn)]  ;;用tuple-action-fn创建receive queue的event-handler          (disruptor/consumer-started! receive-queue) ;;标识consumer开始运行          (fn []                        (disruptor/consume-batch-when-available receive-queue event-handler) ;;真正的consume receive-queue              0))) ;;sleep 0s      :kill-fn (:report-error-and-die executor-data)      :factory? true      :thread-name component-id)]))

 

2.1 tuple-action-fn

先判断tuple的stream-id, 对于METRICS_TICK的处理参考上面

否则, 就是普通的tuple, 用对应的task去处理

对于一个executor线程中包含多个task, 其实就是这里根据task-id选择不同的task-data
并且最终调用bolt-obj的execute, 这就是user定义的bolt逻辑

^IBolt bolt-obj (:object task-data)

(.execute bolt-obj tuple)

 

2.2 async-loop, 启动线程

2.2.1 bolt-emit

类似send-spout-msg, 被emit调用, 用于发送tuple, Storm的命名风格不统一

调用task-fn产生out-tasks, 以及调用transfer-fn, 将tuples发送到发送队列都比较好理解

关键中一段对于anchors-to-ids的操作, 刚开始有些费解...这个anchors-to-ids 到底干吗用的?

用于记录的DAG图中, 该tuple产生的edge, 以及和root的关系

代码里面anchor表示的是源tuple, 而理解上anchor更象是一种关系, 所以有些confuse 
所以上面的逻辑就是新产生edge-id, 虽然相同的out-task, 但不同的anchor会产生不同的edge-id
然后对每个anchor的root-ids, 产生map [root-id, edge-id] (上面的逻辑是异或, 因为不同anchors可能有相同的root)
最终就是得到该tuple产生edges和所有相关的roots之间的关系

然后其中的(.updateAckVal a edge-id)是干吗的?

为了节省一次向acker的消息发送, 理论上, 应该在创建edge的时候发送一次消息去acker上注册一下, 然后在ack的时候再发送一次消息去acker完成ack
但是storm做了优化, 节省了在创建edge的这次消息发送
优化的做法是,
将新创建的edge-id, 缓存在父tuple的_outAckVal上, 因为处理完紧接着会去ack父tuple, 所以在这个时候将新创建的edge信息一起同步到acker,具体看下面的ack实现
所以这里调用updateAckVal去更新父tuple的_outAckVal(做异或), 而没有向acker发送消息

关于storm跟踪所有tuple的方法

传统的方法, 在spout的时候, 生成rootid, 之后每次emit tuple, 产生一条edgeid, 就可以记录下整个DAG
然后在ack的时候, 只需要标记或删除这些edgeid, 表明已经处理完就ok.
这样的问题在于, 如果DAG图比较复杂, 那么这个结构会很大, 可扩展性不好
storm采用的方法是, 不需要记录具体的每条edge, 因为实际上他并不关心有哪些edge, 他只关心每条edge是否都被ack了, 所以只需要不停的做异或, 成对的异或结果为0

 

2.2.1 prepare

主要在于OutputCollector的实现,

其中emit和emitDirect都是直接调用bolt-emit, 很简单

重点就是ack和fail的实现

其中比较难理解的是, 发送ack消息是不是直接发送本身的edge-id, 而是(bit-xor id ack-val)

其实做了两件事, ack当前tuple和同步新的edges
因为acker拿到id和ack-val也是和acker记录的值做异或, 所以这里先直接做异或, 省得在消息中需要发送两个参数

总结

如果有耐心看到这儿, 再附送两幅图...

 

转载地址:http://swucx.baihongyu.com/

你可能感兴趣的文章
MySQL建表语句的一些特殊字段
查看>>
DeDe调用指定栏目ID下的文章
查看>>
《Unix环境高级编程》读书笔记 第8章-进程控制
查看>>
腾讯前端二面题目详解
查看>>
mascara-1
查看>>
C#中Time
查看>>
IBM Cloud Speech to Text 语音识别
查看>>
Jquery Form表单取值
查看>>
【cocos2d-js官方文档】十二、对象缓冲池
查看>>
php分页
查看>>
Python version 2.7 required, which was not found in the registry
查看>>
Android API level 与version对应关系
查看>>
[实战演练]Intel面试题目 - 进栈出栈顺序问题
查看>>
Team Name
查看>>
String类
查看>>
JAVA中各种日期表示字母
查看>>
结对编程2
查看>>
颤抖吧,Css3
查看>>
西门子_TDC_数据耦合小经验
查看>>
接口测试与postman
查看>>